Measurements of natural background radiation in the underground laboratories of the BSUIN and EUL projects.

Katarzyna Szkliniarz, Kinga Polaczek-Grelık, Agata Walencik-Łata, Jan Kisiel

A. Chełkowski Institute of Physics, University of Silesia, Poland
NEW BSUIN

BSUIN and EUL projects

— **BSUIN - Baltic Sea Underground Innovation Network**
 — The project aims to develop the capabilities of ULs in order to improve their service offering as a capacity for innovation, and to create a network of the Baltic Sea Region's ULs in order to provide the users an easy access and environment for business development and innovation.
 — 5 Work packages
 — WP2: Characterization of Underground Laboratories
 — A.2.2 Natural radioactive background characterization

— **EUL – Empowering Underground Laboratories Network Usage**
 — EUL is an extension stage project of the regular BSUIN project.
 — The main goal is to test the developed business and service concepts for the established network of underground laboratories and for the individual laboratories.
 — 4 Work packages
 — WP3: Customer Relationship Management of the ULs
 — A.3.3 Optimal underground facility selection for the UL customers

More information on both projects were presented in the virtual session in the presentation:
J.Kisiel et al., *Underground laboratories in the Baltic Sea Region - EUL Project*
NEW BSUIN

BSUIN and EUL Underground Laboratories

Partner Laboratories
- Callio Lab, Pyhäalsalmi (Finland),
- Äspö Hard Rock Laboratory, Oskarshamn (Sweden),
- TU-Freiberg’s Research and Education Mine “Reiche Zeche” (Germany),
- Conceptual Lab development co-ordinated by KGHM Cuprum R&D centre (Poland),
- UL of Khlopin Institute (Russia),
- Ruskeala marble mine (Russia).

Associated Laboratories
- Experimental Barbara mine (Poland),
- Hagerbach Test Gallery (Switzerland).
Callio Lab (Finland)
- Copper, zinc, and pyrite mine.
- The oldest and deepest base metal mine in Europe.
- Location: in the city of Pyhäsalmi in Central Finland.
- 7 Labs (levels: 75 - 1440 m).
- Measurements were made in Lab2 at a depth of 1430 m (4 000 m w.e.).

Reiche Zeche mine (Germany)
- Historic ore mine.
- Location: Eastern Erzgebirge Mountains Scientific and didactic mine of the Bergakademie Freiberg University of Technology (TUBAF).
- Two shafts: Reiche Zeche and Alte Elisabeth.
- Measurements were made on the first level of 150 m (390 m w.e.).
Measurements of Natural Radioactivity

In-situ gamma measurements
- γ spectrometry with HPGe detector

Measurement of radon concentration in air
- RAD7 detector

Rock sample analysis
- α and γ spectrometry

Water sample analysis
- LSC, α spectrometry

RAD7 detector

γ spectrometry

α spectrometry

LSC technique
NEW BSUIN

In-situ γ-ray measurements

- Measurements were performed in:
 - **server room** - Reiche Zeche mine (dimensions 3 m x 3 m x 2.2 m),
 - **Lab 2** - Callio Lab (dimensions 9 m x 15 m x 8 m).

- Equipment used for measurements (Canberra Industries, Inc., USA):
 - GR4020 portable spectrometer, HPGe coaxial detector (40% relative efficiency),
 - InSpector™ 2000 multichannel analyser (for data collecting),
 - Genie™ 2000 v.3.2.1 software package (for spectra analysing)

- Before measurements, two calibrations were made:
 - the energy calibration: 7 sealed radioactive sources (\(^{133}\)Ba, \(^{137}\)Cs, \(^{54}\)Mn, \(^{57}\)Co, \(^{109}\)Cd, \(^{22}\)Na, \(^{60}\)Co),
 - the efficiency calibration: the In Situ Object Counting System (ISOCS™) - a mathematical calibration software was used.

<table>
<thead>
<tr>
<th></th>
<th>Reiche Zeche server room(^1)</th>
<th>Callio Lab (Lab2)(^2)</th>
<th>CUPRUM (salt cavern P1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective dose rate [(\mu\text{Sv/h})]</td>
<td>0.036±0.008</td>
<td>0.158 ± 0.029</td>
<td>0.002(^3)</td>
</tr>
<tr>
<td>Gamma-ray flux density [(\text{cm}^2\text{s}^{-1})]</td>
<td>2.8 ± 0.8</td>
<td>12.7 ± 1.5</td>
<td>0.124 ± 0.002(^4)</td>
</tr>
<tr>
<td>Counts per second</td>
<td>516.95±0.05</td>
<td>654.75±0.05</td>
<td>-</td>
</tr>
<tr>
<td>Energy range [keV]</td>
<td>[7-3150]</td>
<td>[7-3150]</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^3\)J.Kisiel et al., Acta Phys Pol B, 41(2010)7,
\(^4\)K.Polaczek-Greli et al., J Radioanal. Nucl. Chem. 308 (2016) 773 – 780,
NEW BSUIN

Radon concentration in air

The measurement was done in the server room using a RAD7 electronic radon detector (Durridge Company, Inc.), located near the gamma-ray spectrometer.

Radon concentration was obtained from 24 or 48 measurements (1 h-long each).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reiche Zeche server room1</th>
<th>Callio Lab (Lab2)2</th>
<th>CUPRUM salt cavern3</th>
</tr>
</thead>
<tbody>
<tr>
<td>222Ra [Bq/m3]</td>
<td>805.1±10.4</td>
<td>247.5±26.3</td>
<td>12±4 - 49±8</td>
</tr>
</tbody>
</table>

3J.Kisiel et al., Acta Phys Pol B, 41(2010)7,
234,238U concentration in water samples

The measurements of 234,238U isotopes concentration were performed with the use of α spectrometry technique (7401VR from Canberra (Packard).

Before measurements, the radiochemical procedure was made:
- Samples were acidified with HNO₃.
- To each water sample, added the standard 232U of known activity.
- The separation of uranium was done with the use of the anion exchange resin Dowex 1×81.
- A thin α-source was prepared by coprecipitation with NdF₃ and filtration.
- The Minimum Detectable Activity (MDA) was equal to 0.5 mBq/l (0.5 l initial sample volume, 2 days measurement time).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reiche Zeche server room [mBq/l]²</th>
<th>Callio Lab (Lab2) [mBq/l]³</th>
<th>Outside PH-500907</th>
<th>PH-102</th>
<th>PH-103</th>
</tr>
</thead>
<tbody>
<tr>
<td>²³⁸U</td>
<td>150.4±5.2</td>
<td>6.5±0.7</td>
<td><0.5</td>
<td><0.5</td>
<td></td>
</tr>
<tr>
<td>²³⁴U</td>
<td>142.4±4.9</td>
<td>11.1±0.9</td>
<td>4.9±0.7</td>
<td>0.8±0.2</td>
<td></td>
</tr>
<tr>
<td>²³⁴U/²³⁸U</td>
<td>0.95±0.5</td>
<td>1.70±0.23</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. J. Suomela, Method for Determination of U-Isotopes in Water, Swedish Radiation Institute, Stockholm, 1993,
The measurements of $^{226,228}\text{Ra}$ activity concentrations were done by using the LSC technique (1414 WinSpectral α/β LSC (Wallac) and 1410 Tricarb α/β LSC).

Before measurements, the chemical procedure1 was applied.

The time of measurement sample was one h (once per day over a period of one month until a secular equilibrium between ^{226}Ra and its daughters was reached).

The MDA for radium isotopes: ^{226}Ra: 0.015 Bq/l, ^{228}Ra: 0.04 Bq/l (1.5 l initial sample volume).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reiche Zeche server room [mBq/l]2</th>
<th>Callio Lab (Lab2) [mBq/l]3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outside PH-500907 PH-102 PH-103</td>
</tr>
<tr>
<td>^{226}Ra</td>
<td><15</td>
<td>54.9±1.3 116.6±2.7 15.1±0.4</td>
</tr>
<tr>
<td>^{228}Ra</td>
<td><40</td>
<td>36.9±2.1 10.7±4.5 6.1±0.9</td>
</tr>
</tbody>
</table>

1Polish Norm PN - 89 Z - 70072, 1989,
The measurements of 234,238U activity concentrations were performed with the same technique as for the water sample - α spectrometry technique (7401VR from Canberra, Packard).

Before measurements, the radiochemical procedure was made:

- Rock samples were dried and crushed with a ball mill and etched with hot acids: HF, HNO$_3$, and HCl with H$_3$BO$_3$.
- Uranium was preconcentrated with iron and co-precipitated at pH 9.
- The separation of uranium was done with the use of the anion exchange resin Dowex 1×8.1
- The sample for α-spectrometric measurement was prepared by co-precipitation of U with NdF$_3$ and deposition on polypropylene disks.
- The Minimum Detectable Activity (MDA) was 0.4 mBq per sample for uranium isotopes (234,238U).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reiche Zeche server room2</th>
<th>Callio Lab (Lab2)3</th>
<th>CUPRUM (salt cavern)4</th>
</tr>
</thead>
<tbody>
<tr>
<td>238U [Bq/kg]</td>
<td>32.4±2.3 rock</td>
<td>57.4±3.7-87.1±3.6 concrete 1.4±0.2-11.4±1.4 rock</td>
<td>0.016±0.003-0.40±0.06 salt 0.82±0.09 anhydrite</td>
</tr>
<tr>
<td>234U [Bq/kg]</td>
<td>34.4±2.4 rock</td>
<td>53.9±3.5-89.2±3.7 concrete 1.6±0.2 - 10.3±1.3 rock</td>
<td>0.021-0.38±0.05 salt 0.76±0.24 anhydrite</td>
</tr>
<tr>
<td>234U/238U</td>
<td>1.06±0.11 rock</td>
<td>0.94±0.09-1.02±0.60 concrete 0.90±0.15-1.20±0.17 rock</td>
<td>-</td>
</tr>
</tbody>
</table>

The measurements of radioisotopes concentration were performed using the gamma spectrometry method with a lead-shielded HPGe detector.

Before the measurements, rock samples were dried, crushed, ground, and stored in a Marinelli container (for one month to achieve the secular equilibrium in thorium and uranium series).

The HPGe detector has a 60.7 mm crystal diameter and a Cryo-Pulse 5 Plus, an electrically powered cryostat, and a relative efficiency of 20%.

The radioactivity concentrations were calculated based on a standard prepared from certificated materials from the Central Laboratory for Radiological Protection in Poland.

The activity of 226Ra was calculated as the weighted mean of the values obtained from the 214Pb (295.2; 351.9 keV) and 214Bi (609.3; 1120.3 keV) isotopes, whereas the activity of 228Ra from the gamma lines 338.3 keV and 911.1 keV originating from 228Ac, while the activity of 40K from the 1460.8 keV line.
NEW BSUIN

226Ra, 232Th, 40K concentration in rock samples

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reiche Zeche server room1</th>
<th>Callio Lab (Lab2)2</th>
<th>CUPRUM (salt cavern)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>226Ra [Bq/kg]</td>
<td>43.8±0.4 rock</td>
<td>40.2±1.6 – 91.0±2.4 concrete 8.1±0.4 – 58.0±2.3 rock</td>
<td>0.11±0.004-0.008 salt 0.52 anhydrite</td>
</tr>
<tr>
<td>232Th [Bq/kg]</td>
<td>31.5±0.6 rock</td>
<td>34.4±1.5 – 53.8±3.1 concrete 2.6±0.3 – 46.6±2.4 rock</td>
<td></td>
</tr>
<tr>
<td>40K [Bq/kg]</td>
<td>1049±17 rock</td>
<td>662±53 – 1136±47 concrete 104±10 – 272±24 rock</td>
<td>2.1-4.0 salt not determined-anhydrite</td>
</tr>
</tbody>
</table>

Summary

The research results on natural background radiation in selected underground laboratories of the BSUIN and EUL project were presented and compared with previous studies at the Polkowice-Sieroszowice mine (Conceptual Lab development co-ordinated by KGHM Cuprum R&D center, Poland).

The in-situ measurements and laboratory analyses of rock and water samples were performed using α, γ spectrometry, and LSC technique.

The most important results:

- **radon concentration in the air** (the highest value at Reiche Zeche mine),
- **effective dose rate, gamma-ray flux, counts per second** (the highest values for Callio Lab),
- **concentrations of uranium isotopes (234,238U) in water and rock samples** (water: about 20 times higher concentrations for Reiche Zeche than Callio Lab; rock: the highest concentrations for samples from Callio Lab),
- **concentrations of radium isotopes (226,228Ra) in water samples** (values below the MDA for Reiche Zeche mine),
- **concentrations of radium (226Ra), thorium (232Th), and potassium (40K) isotope in rock samples** (the highest concentrations in samples from Callio Lab and the lowest in samples from the Polkowice-Sieroszowice mine).
Thank You!