Yttrium-90 separation in carbonate media by solvent extraction

Igor Smirnov1,2
Ahmed Harb3,4
Igor Balantsev2,3
Maria Karavan1,2

1 - Ozersk Technological Institute, Russia, Ozersk, Chelyabinsk obl.
2 - Khlopin Radium Institute, Russia, St. Petersburg
3 - Saint Petersburg State University, Russia, St. Petersburg
4 - Atomic Energy Authority, Hot Laboratories Center, Nuclear Chemistry Department, Egypt, Inshas, Cairo
Introduction

Yttrium-90

$T_{1/2} = 64$ hours, $E_\beta = 2.28$ MeV

Daughter product of Strontium-90

Has radiotherapy application because of its practically pure β^- particle emission.

Useful for Strontium-90 monitoring in the environment

Strontium-90

$T_{1/2} = 28.8$ years, $E_\beta = 0.546$ MeV

One of the fission products of ^{235}U

A part of radioactive waste and nuclear fallout from nuclear tests

Exhibits biochemical behavior similar to calcium and accumulates in bones

Used as a marker radionuclide for atropogenic radioactive contamination levels determination

$^{90}\text{Y}/^{90}\text{Sr}$ separation is still a challenging task for radiochemists in both environmental and clinical application.
Introduction

Usual practice: ^{90}Y recovery from acidic media with crown ethers and D2EHPA (di-2-ethyl-hexyl-phosphoric acid) as extractants.

Our proposal: $^{90}\text{Y}/^{90}\text{Sr}$ separation and recovery from alkaline carbonate media

advantages – greener, faster, cheaper

Potential yttrium extractants

Diluents
Toluene
2-nitro-toluene
Butyl acetate

2,3-DHN
(2,3-dihydroxynaphthalene)

PAN
(pyridylazonaphthol)

8-HQ
(8-hydroxyquinoline)

PAR
(pyridylazoresorcinol)

chromotropic acid
Experimental

Step 1

Y₂O₃ solubility and dissolution kinetics study

Na₂CO₃, K₂CO₃ and (NH₄)₂CO₃ were used to study Y₂O₃ solubility at room temperature.

To study yttrium dissolution rate we prepared a disk with a constant surface area:

\[0.03 \text{ g Y}_2\text{O}_3 \rightarrow 6 \text{ mm diameter and 0.4 mm thickness disk} \]

with the surface \(S \), described as

\[S = 2 \pi r^2 + 2 \pi rh = 2 \pi r (r + h) \]

The batch experiments were conducted with 20 mL of each alkaline agent in a 25 mL bottle.

<table>
<thead>
<tr>
<th>Alkaline agent</th>
<th>Solubility g/L</th>
<th>Dissolution rate V g·m²/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 M NaHCO₃</td>
<td>0.5 ± 0.035</td>
<td>0.071 ± 0.023</td>
</tr>
<tr>
<td>1 M Na₂CO₃</td>
<td>1.7 ± 0.017</td>
<td>0.213 ± 0.025</td>
</tr>
<tr>
<td>1 M K₂CO₃</td>
<td>0.9 ± 0.031</td>
<td>0.262 ± 0.021</td>
</tr>
<tr>
<td>1 M (NH₄)₂CO₃</td>
<td>2.8 ± 0.182</td>
<td>0.243 ± 0.026</td>
</tr>
<tr>
<td>2 M Na₂CO₃</td>
<td>4.9 ± 0.096</td>
<td>0.430 ± 0.013</td>
</tr>
<tr>
<td>2 M K₂CO₃</td>
<td>1.4 ± 0.029</td>
<td>0.458 ± 0.010</td>
</tr>
<tr>
<td>2 M (NH₄)₂CO₃</td>
<td>8.2 ± 1.01</td>
<td>0.622 ± 0.018</td>
</tr>
</tbody>
</table>

Based on the high Y₂O₃ solubility and dissolution rate, we studied yttrium extraction from Na₂CO₃, K₂CO₃ and (NH₄)₂CO₃ solutions.
Experimental

Step 2

Yttrium extraction and Y/Sr separation in alkaline carbonate media

Despite $(\text{NH}_4)_2\text{CO}_3$ has the highest solubility and dissolution rate, it possess a poor yttrium extraction and low distribution ratio (D) (with third phase formation).

K_2CO_3 demonstrates the highest yttrium distribution ratio (D) with 8-HQ, followed by $\text{Na}_2\text{CO}_3 \rightarrow \text{K}_2\text{CO}_3$ was chosen for further extractions and separations studies.

Only 8-HQ and 2,3-DHN demonstrated sufficient values of yttrium distribution ratios.

For extraction experiments the following system was chosen:

“0.01 M of L (8-HQ/2,3-DHN) in org. diluent (BuAc/2-nitrotoluene) - 0.001 M [Y] in 0.5 M K_2CO_3 aqueous solution”.

For $^{90}\text{Y}/^{90}\text{Sr}$ separation the following system was chosen:

“0.001 M of L (8-HQ/2,3-DHN) in org. diluent (BuAc/2-nitrotoluene) – 4*10^{-5} M [Y] and 1*10^{-6} M [Sr] in 0.5 M K_2CO_3 aqueous solution”.

Y and Sr concentrations are measured spectrophotometrically and by ICP.

^{90}Y and ^{90}Sr distribution ratios were measured radiometrically.
Experimental
Yttrium extraction (8-HQ)

The effect of initial pH of the aqueous solution

Extraction with 8-HQ demonstrates that the value of yttrium distribution ratio D depends on initial pH of the aqueous phase, gradually increasing from pH = 10 to pH = 13.5.

Organic phase saturation shows the limit ratio $[L]:[M] = 4.1$, which one can interpret as solvate composition ML4.
Experimental
Yttrium/Strontium separation with 8-HQ

Extraction and separation experiments, carried out for stable Y and Sr demonstrated the principal possibility of Y/Sr pair separation by solvent extraction. Separation factor SF for extraction systems «0.001 M of 8-HQ in org. diluent – 4*10^{-5} M [Y] and 1*10^{-6} M [Sr] in 0.5 M K_{2}CO_{3} aqueous solution» increases with pH and reaches its maximum values at pH = 13.5 both for BuAc and 2-nitrotoluene. Y is extracted much better (D_{max} = 3.89) in 2-nitrotoluene with practically the same Sr extraction for two organic diluents. Maximum separation is observed in 2-nitrotoluene: SF = 195.
Extraction and separation experiments, carried out for radioactive 90Y and 90Sr confirmed the principal possibility of Y/Sr pair separation by solvent extraction with some features for trace amounts of radioactive isotopes.

The trend of SF dependence on pH is the same: it reaches maximum values at pH = 13.5 both for BuAc and 2-nitrotoluene.

In contrast with the stable Y and Sr, 90Y is extracted much better ($D_{\text{max}} > 65$) in BuAc. Maximum separation is observed in BuAc: SF \sim 200.
Experimental
Yttrium/Strontium separation

<table>
<thead>
<tr>
<th>Diluent</th>
<th>8-HQ pH = 13.5</th>
<th>2,3-DHN pH = 13.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D<sub>Y</sub></td>
<td>D<sub>Sr</sub></td>
</tr>
<tr>
<td>BuAc</td>
<td>0.177</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td>65.7*</td>
<td>0.33*</td>
</tr>
<tr>
<td>2-nitrotoluene</td>
<td>3.89</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>9.59*</td>
<td>0.1*</td>
</tr>
</tbody>
</table>

* - measured radiometrically

The similarity of extraction and separation data, obtained for stable and radioactive isotopes with 8-HQ, is evident for 2-nitrotoluene. Taking into account the different experimental methods, the values are very close. This confirms the principal possibility of Y/Sr separation in carbonate media. The opposite situation for BuAc requires further investigation.

Conclusion

Y/Sr extraction and separation in carbonate media with several ligands showed, that only 8-HQ and 2,3-DHN can be regarded as perspective compounds for further studies.

The data obtained for stable and radioactive isotopes separation with 8-HQ revealed differences in the behavior of the extracted elements, which can be explained by differences in their concentrations (trace amounts for ⁹⁰Y and ⁹⁰Sr with the background of stable Y).

2,3-DHN demonstrated high solubility in aqueous phase with low values of distribution ratios, but it is still regarded as perspective after addition of modifier, preventing its transfer into aqueous phase.

The study was supported by the Russian Science Foundation (project No. 20-63-46006).